

E-ISSN: 2663-1067 P-ISSN: 2663-1075 IJHFS 2021; 3(1): 75-78 Received: 27-10-2020 Accepted: 03-12-2020

VA Apotikar Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, India

AV Solanke

Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, India

GS Laharia

Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, India

Corresponding Author: VA Apotikar Dr. Panjabrao Deshmukh krishi Vidyapeeth, Akola, Maharashtra, India

Effects of sowing windows on gradewise yield of tubers of potato

VA Apotikar, AV Solanke and GS Laharia

DOI: https://doi.org/10.33545/26631067.2021.v3.i1a.183

Abstract

The field trial was conducted during both the seasons (2009-10 and 2010-11) on PGI Farm without changing randomization. The experiment was laid out in *rabi* season. The various components of yield and yield contributing characters were calculated. The growth and yield contributing characters, small (19.28 and 16.99 q ha⁻¹), medium (123.94 and 50.97 q ha⁻¹), large sized (132.20 and 271.81 q ha⁻¹), pooled yield (307.59 q ha⁻¹) and pooled haulm yield (12.23 q ha⁻¹) were higher in 1.2 IW/CPE ratio (5 irrigations at 18 to 20 days interval) and planting on 44th MW (Oct 29-Nov 04) with sugarcane trash mulch as compared to other treatments.

Keywords: Sowing window, grade wise yield of tuber, small, medium and large

Introduction

Potato is one of the most important crops of the world, ranking next to rice and wheat. In the world more than billion people eat potatoes (Rajendra Prasad, 2002)^[2]. The potato is a crop which always been the poor man's friend. For vegetable purpose, it has become one of the most popular crops in the country. Potatoes are economical food as they provide a source of low cost energy to human diet. Potato is one of the world leading vegetable crops and cheapest source of carbohydrate and furnishes appreciable amount of vitamin B₁ and C₁ as well as minerals (Thompson and Kelly 1972)^[3]. They contain 20.6 per cent carbohydrate, 0.3 per cent fat, 1 per cent crude fibre and 0.9 per cent ash. They also contain a good amount of essential amino acids like leucine, tryptophan and isoleucine (Anonymous, 2008)^[1]. The non-adoption of improved agro-techniques in a climate change scenario as irrigation scheduling, variable planting dates and use of mulch are the limiting factors for low productivity and poor in creation of favorable microclimatic conditions. Globally this climate change should also be addressed in eco-friendly manner.

With this back ground in view, the present investigation was undertaken to know the gradewise yield of tuber as Influenced by sowing windows in potato.

Materials and Methods

The field trial of Potato (Variety) Kufri Pukhraj was conducted during both the seasons (2009-10 and 2010-11) on PGI Farm without changing randomization. The experiment was laid out Split Plot Design in rabi season with Recommended dose of fertilizer. 120:60:120 NPK Kg ha⁻¹. There were eighteen treatments comprised of nine main plot treatments and two sub-plot treatments.

Treatment details: A Main plot Treatments (Nine)										
freatment uctans. A. Main plot freatments (Mine)										
Irrigation levels (I) X Planting dates (D)										
I ₂ D ₁ - (1.0 IW/CPE) X (42 MW)										
I2D2 - (1.0 IW/CPE) X (44 MW)										
I2D3 - (1.0 IW/CPE) X (46 MW)										
B. Sub-plot Treatments (Two) Mulching (M)										
M2 - Without mulch										

Post-harvest studies

The sample plants which selected earlier for pre harvest studies of potato crop were used later for post-harvest studies too.

Harvesting of tubers

Before harvesting of tubers dehaulming was done and haulms were put on the ridges for drying and tubers were kept in soil for five days for hardening of tuber skin. Harvesting of potato tubers was done manually according to the planting dates. The ring lines were first harvested and then tubers from net area were harvested and weighed separately gradewise from each net plot.

Results and Discussions

The important findings of the experiment studies under different irrigation levels, planting dates and mulching are presented in this chapter under appropriate heads.

Gradewise yield of tubers

The data regarding gradewise yield of tubers (q ha⁻¹) as influenced by various treatments during 2009⁻¹0, 2010⁻¹11 and total are presented in Table 1 and 2 and graphically depicted in Fig. 1 The mean yield of small grades (< 25 g), medium (25-75 g) and big (>75 g) was, 15.31, 98.40 and 104.96 q ha⁻¹ during and it was 11.95, 35.84 and 191.14 a ha⁻¹ during second year.

Effect of irrigation levels and planting dates (I x D)

The irrigation levels and planting dates significantly influenced the gradewise yield of potato tubers during both the years.

Small grade (<25 g)

During first year, the treatment I_3D_2 was significantly obtained the highest yield of small grade tubers (19.28 q ha⁻¹) followed by I_3D_1 (18.09 q ha⁻¹), which was at par with I_2D_2 followed by I_3D_3 and I_2D_1 . The treatment I_2D_1 , I_1D_2 and I_2D_3 were at par with each other. The lowest yield was obtained in I_1D_1 (11.09 q ha⁻¹). During second year, the treatment I_3D_2 was significantly obtained the highest yield of small grade tubers (16.99 q ha⁻¹) followed by I_2D_2 (14.78 q ha⁻¹), I_3D_3 , I_3D_1 and I_1D_2 . The treatment I_1D_2 and I_2D_1 were at par with each other. The lowest yield was obtained in I_1D_1 (8.53 q ha⁻¹).

Medium grade (25-75 g)

During first year, the treatment I_3D_2 was significantly obtained the highest yield of medium grade tubers (123.94 q

ha⁻¹) followed by I₃D₁, which was at par with I₂D₂ (115.06 q ha⁻¹) followed by I₃D₃ and I₂D₁. The treatment I₂D₁ was at par with I₁D₂ and I₂D₃. The lowest yield was obtained in I₁D₁ (71.27 q ha⁻¹). During second year, the treatment I₃D₂ was significantly obtained the highest yield of medium grade tubers (50.97 q ha⁻¹) which was followed by I₂D₂ (44.34 q ha⁻¹), I₃D₃, I₃D₁ and I₁D₂. The treatment I₁D₂ was at par with I₂D₁ followed by I₂D₃. The lowest yield was obtained in I₁D₁ (25.60 q ha⁻¹).

Large grade (>75 g)

During first year, the treatment I_3D_2 was significantly obtained the highest yield of large grade tubers (132.20 q ha⁻¹) followed by I_3D_1 (124.05 q ha⁻¹), which was at par with I_2D_2 followed by I_3D_3 I_2D_1 . The lowest yield was obtained in I_1D_1 (76.03 q ha⁻¹). During second year, the treatment I_3D_2 was significantly obtained the highest yield of medium grade of tubers (271.81 q ha⁻¹) followed by I_2D_2 (236.48 q ha⁻¹), I_3D_3 , I_3D_1 and I_1D_2 . The treatment I_1D_2 was at par with I_2D_1 . The lowest yield was obtained in I_1D_1 (136.51 q ha⁻¹).

Effect of mulching

In mulching, gradewise yield of tuber was significantly superior to without mulching during both years.

Interactions

The data presented in Table 1 indicate that, during first year, interaction effect of irrigation levels with mulching and planting dates with mulching were non-significant, while during second year they were found significant.

Interaction effect between (IxM)

During second year, the interaction combination of different treatments, I_3M_1 was recorded significantly the highest yield of small grade tubers (15.01 q ha⁻¹) (Table 1) medium grade tubers (45.04 q ha⁻¹) and large tuber yield (240.21 q ha⁻¹) (Table 2) which were followed by I_3M_2 , significantly superior to rest of the treatments. The treatment combination I_3M_2 and I_2M_1 were at par with each other's. The treatments I_2M_2 , I_1M_2 and I_1M_2 were recording the yield in descending order.

Interaction effect between (DxM)

During second year, the interaction combination of different treatments, D_2M_1 was recorded significantly the highest small grade tubers (15.34 q ha⁻¹), medium grade tubers (46.02 q ha⁻¹) and large tuber yield (245.44 q ha⁻¹) (Table 1). Which were followed by D_2M_2 and D_3M_1 . The treatments D_1M_1 , D_1M_2 and D_3M_2 were yielding in descending order.

 Table 1: Yield contributing characters of potato as influenced by different treatments at harvest

	Tuber yield (q ha ⁻¹) (2009-10)											
Treatments	Small (up to 25 g)			Medium (25-75 g)			Large (>75 g)			Total		
	M ₁	M_2	Mean	M_1	M_2	mean	M ₁	M_2	mean	M 1	M_2	mean
I_1D_1	12.55	11.79	12.17	80.67	72.86	76.76	86.05	80.82	83.43	179.27	168.46	173.87
I_1D_2	13.37	12.42	12.90	85.96	79.86	82.91	91.69	85.19	88.44	191.02	177.48	184.25
I_1D_3	10.56	10.37	10.46	67.87	52.64	60.25	72.39	71.09	71.74	150.82	134.10	142.46
I_2D_1	12.97	11.95	12.46	83.35	75.77	79.56	88.91	81.94	85.42	185.23	169.65	177.44
I2D2	17.67	13.34	15.50	113.56	85.77	99.67	121.13	91.49	106.31	252.36	190.60	221.48
I2D3	12.22	10.88	11.55	78.54	66.65	72.59	83.77	74.60	79.18	174.52	152.12	163.32
I_3D_1	13.07	12.25	12.66	84.02	78.75	81.38	89.62	84.00	86.81	186.70	175.00	180.85
I_3D_2	18.61	13.35	15.98	119.61	85.79	102.70	127.58	91.51	109.55	265.80	190.65	228.22
I ₃ D ₃	12.54	11.33	11.94	80.59	69.93	75.26	85.97	77.71	81.84	179.10	158.98	169.04
mean	13.73	11.96	12.85	88.24	74.22	81.23	94.12	82.04	88.08	196.09	168.56	182.33

	S.Em±	CD at 5%						
Main plot (I X D)	0.56	1.69	5.73	17.17	3.87	11.60	8.06	24.17
Sub plot (M)	0.36	1.07	2.92	8.67	2.46	7.31	5.12	15.23
Interactions								
I X M	0.62	NS	5.06	NS	4.26	12.66	8.88	26.37
D X M	0.62	NS	5.06	NS	4.26	12.66	8.88	26.37
(I X D) X M	1.08	3.20	8.76	NS	7.38	21.92	15.37	45.68

Note: I₁-(0.8 IW/CPE), I₂-(1.0 IW/CPE), I₃-(1.2 IW/CPE), D₁-(42 MW), D₂-(44 MW), D₃-(46 MW), M₁- (with mulch), M₂- (without mulch)

Interaction effect between (IxDxM)

Perusal of the data Table 2 show that, during first year regarding small, medium and large grade tuber yield, the treatment combination $I_3D_2M_1$ was significantly superior contributing the highest gradewise yield of tubers (20.77, 133.54 and 142.44 q ha⁻¹) followed by $I_3D_1M_1$ (19.20, 123.44 and 131.67 q ha⁻¹), $I_2D_2M_1$ and $I_3D_2M_2$, while rest of the treatments were at par with each other's. Significantly the lowest tuber yield was obtained by $I_1D_1M_2$ in all cases.

During second year Table 2 also showed that, regarding small, medium and large grade tuber yield, the treatments combination $I_3D_2M_1$ was significantly superior contributing the highest gradewise yield of tubers (18.06, 54.18 and 288.96 q ha⁻¹) followed by $I_3D_2M_2$, $I_2D_2M_1$ and $I_2D_2M_2$, while rest of the treatments were at par with each other's. Significantly the lowest tuber yield was obtained by $I_1D_3M_2$ in all cases.

Table 2: Gradewise yield of tubers as influenced by different treatments 2010-11

	Tuber yield (q ha ⁻¹)												
	Small (up to 25 g)				Medium (25-75 g)			Large (>75 g)			Total		
Treatments	M. (With	N	I 2		M. (With	M_2		M ₁	M_2		M_1	M_2	
	mulch)	(Wit	hout	Mean	mulch)	(Withou	t Mean	(With	(Without	Mean	(With	(Without	Mean
	march)	mu	lch)		inuren)	mulch)		mulch)	mulch)		mulch)	mulch)	
I1D1 (0.8 IW/CPE x 42 MW)	8.98	8.	08	8.53	26.94	24.25	25.60	143.68	129.34	136.51	179.60	161.67	170.64
I1D2 (0.8 IW/CPE x 44 MW)	12.25	10	.82	11.54	36.75	32.47	34.61	196.01	173.16	184.58	245.01	216.44	230.73
I1D3 (0.8 IW/CPE x 46 MW)	9.30	8.	07	8.69	27.90	24.22	26.06	148.80	129.16	138.98	186.00	161.44	173.72
I ₂ D ₁ (1.0 IW/CPE x 42 MW)	12.10	10	.52	11.31	36.31	31.57	33.94	193.66	168.36	181.01	242.08	210.44	226.26
I ₂ D ₂ (1.0 IW/CPE x 44 MW)	15.71	13.	.85	14.78	47.13	41.55	44.34	251.35	221.60	236.48	314.19	277.00	295.60
I ₂ D ₃ (1.0 IW/CPE x 46 MW)	11.60	8.	81	10.20	34.80	26.42	30.61	185.60	140.89	163.25	232.01	176.11	204.06
I ₃ D ₁ (1.2 IW/CPE x 42 MW)	13.21	11	.71	12.46	39.64	35.13	37.38	211.39	187.33	199.36	264.23	234.17	249.20
I ₃ D ₂ (1.2 IW/CPE x 44 MW)	18.06	15	.92	16.99	54.18	47.75	50.97	288.96	254.67	271.81	361.20	318.33	339.77
I ₃ D ₃ (1.2 IW/CPE x 46 MW)	13.77	12	.27	13.02	41.30	36.82	39.06	220.29	196.35	208.32	275.37	245.44	260.40
Mean	12.78	11.	.12	11.95	38.33	33.35	35.84	204.42	177.87	191.14	255.52	222.34	238.93
	S.Em+		CD a	t 5%	S.Em+	- CI) at 5%	S.En	n± CD	at 5%	S.En	n± CD	at 5%
Main plot(I X D)	0.13		0.3	38	0.38		1.13	2.0	1 (5.03	2.5	1 7	.54
Sub plot (M)	0.06		0.1	17	0.17		0.52	0.93	3 2	2.76	1.1	6 3	3.45
	Interactions												
I X M	0.10	0.10 0.30		0.30		0.90	1.6	1 4	4.77	2.0	1 5	5.97	
D X M	0.10		0.3	30	0.30		0.90	1.6	1 4	4.77	2.0	1 5	5.97
(I X D) X M	0.17		0.5	52	0.52		1.55	2.78	3 8	3.27	3.4	8 1	0.34

Table 3: Interaction effect of irrigation levels and planting dates with mulching on gradewise yield of potato during 2010-11

Small (up to 25 g) (q ha ⁻¹)										
Irrigation levels	M ₁ (With mulch)	M ₂ (Without mulch)	Mean	Planting dates	M ₁ (With mulch)	M ₂ (Without mulch)	Mean			
I1 (0.8 IW/CPE)	10.18	8.99	9.58	D1 (42 MW)	11.43	10.10	10.77			
I ₂ (1.0 IW/CPE)	13.14	11.06	12.10	D ₂ (44 MW)	15.34	13.53	14.43			
I ₃ (1.2 IW/CPE)	15.01	13.30	14.16	D ₃ (46 MW)	11.56	9.72	10.64			
Mean	12.78	11.12	11.95	Mean	12.78	11.12	11.95			
S.Em±		0.10		S.Em±	m± 0.10					
CD at 5%		0.30		CD at 5%		0.30				
Medium (25-75 g) (q ha ⁻¹)										
Irrigation levels	M ₁ (With mulch)	M ₂ (Without mulch)	Mean	Planting dates	M_1 (With mulch)	M ₂ (Without mulch)	Mean			
I1 (0.8 IW/CPE)	30.53	26.98	28.75	D1 (42 MW)	34.30	30.31	32.30			
I ₂ (1.0 IW/CPE)	39.41	33.18	36.30	D ₂ (44 MW)	46.02	40.59	43.30			
I ₃ (1.2 IW/CPE)	45.04	39.90	42.47	D ₃ (46 MW)	34.67	29.15	31.91			
Mean	38.33	33.35	35.84	Mean	38.33	33.35	35.84			
S.Em±		0.30		S.Em±		0.30				
CD at 5%		0.90				0.90				
		Lar	ge (>75 g	g) (q ha ⁻¹)						
Irrigation levels	M ₁ (With mulch)	M ₂ (Without mulch)	Mean	Planting dates	M_1 (With mulch)	M ₂ (Without mulch)	Mean			
I1 (0.8 IW/CPE)	162.83	143.88	153.36	D1 (42 MW)	182.91	161.68	172.29			
I ₂ (1.0 IW/CPE)	210.21	176.95	193.58	D ₂ (44 MW)	245.44	216.47	230.96			
I ₃ (1.2 IW/CPE)	240.21	212.78	226.50	D ₃ (46 MW)	184.90	155.47	170.18			
Mean	204.42	177.87	191.14	Mean	204.42	177.87	191.14			

S.Em±	1.61	S.Em±	1.61	
CD at 5%	4.77	CD at 5%	4.77	

Conclusion

The interaction between main plot treatments (IxD) with sub plot treatment (M) *i.e.* (IxDxM) were significant for all the yield contributing characters *viz.*, small, large size tuber, total tuber yield and haulm yield in which the irrigation applied at 1.2 IW/CPE ratio and early planting on 44th MW with sugarcane trash mulching (I₃D₂M₁) recorded higher values for all the yield contributing characters.

References

- 1. Anonymous; c2008. www.fao.org
- 2. Rajendra Prasad. Field crop production commercial crops, Indian Council of Agriculture Research, New Delhi; c2002. p. 2.
- 3. Thompson HE, Kelly WC. Vegetable crops (5th edition) McGraw- Hill Book Co. New York; c1972. p. 372.