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Abstract 
The early identification of crop diseases and correct agro-risk analysis are critical to sustainable 

agricultural productiveness and worldwide food security particularly at a time when climate change and 

environmental stressors are rising. In the following paper, the authors present the mentioned 

sophisticated hybrid framework, HDNN-RF FusionNet, which combines the best of both deep and 

ensemble learning when it comes to solving the task of multi-crop diseases diagnosis and agro-risk 

prediction on multimodal data. The framework can handle and train on a wide range of agricultural 

inputs such as satellite-based spectral images, drone-based spectral images, weather time series and 

profiles of soil composition. HDNN-RF FusionNet uses the multi-branch deep neural network 

architecture organization each of which branches is specialized to encode a particular modality. The 

imaging division receives the disease symptoms in the leaf textures and canopy structure in the spectral 

imagery using a convolutional neural network (CNN). The weather branch utilizes long short-term 

memory (LSTM) networks to identify time series aspects of changes in climate conditions affecting 

disease developments. The soil branch transposes a multilayer perceptron (MLP) to classify 

unchanging geographical characteristics, including nutrient concentrates, pH and humidity. All three 

branches output are fused through an attention-weighted fusion layer in which the most significant 

modality becomes prioritized dynamically according to the crop type and environmental condition. The 

fused feature vector is provided as an input to a Random Forest (RF) model, which has two tasks: (1) 

multilabel classification of crop diseases and (2) regression-based prediction of an agro-risk index 

representing the possible impact on yields under the existing and the predicted conditions. This mixed 

architecture is robust, interpretable, and well-generalized in regions and seasonality. The effectiveness 

of the model in early disease detection and risk prediction has been proved by running experimental 

analyses in real-world data, multi-seasonal and multi-location data. HDNN-RF FusionNet proposed is a 

scalable, smart, and smarting answer to next-generation agro-intelligent systems. The suggested 

HDNN-RF FusionNet had an overall accuracy of 96.4%, surpassing all benchmark models in multi-

crop disease detection and agro-risk prediction. 

 

Keywords: Crop disease detection, agro-risk prediction, hybrid deep learning, multimodal data fusion, 

soil and weather analytics 

 

Introduction 

Although the agricultural productivity is one of the most essential bricks of global food 

systems, it has become yet more vulnerable to a complex of environment stressors, new 

types of plant diseases, and climatic variation [1]. Distribution of disease in crops, usually due 

to a mixture of biotic factors and abiotic factors like temperature, humidity and imbalance of 

soil nutrients, is a serious threat to food chain and stability in yields. Global warming and 

changing rainfall patterns in the last few decades have exacerbated the frequency and 

geographic distribution of such diseases as well as cross-nation migration of pests. As such, 

the need to have intelligent systems that can carry out early disease detection and 

prognostication of agro risks capable of facilitating timely response and precision farming 

policy arises. 
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The conventional methods of crop disease surveillance such 

as scouting, visualization and laboratory experiments are 

cumbersome, labor-intensive, and not scaled or fast enough 
[2]. Once high-resolution satellite and drone imagery options 

have become available, with the weather and soil 

monitoring sensors becoming more and more readily 

available as well, it is now possible to have a rich 

agricultural data ecosystem to rely on, with the development 

of smart decision-making strategies. Nonetheless, 

combining and inferring meaningfully and practically in a 

coherent way out of such heterogenous sources of data is 

also a primary research consideration. 

Artificial intelligence (AI) and machine learning (ML) have 

been developed in this regard to become tools of revolution 

in agricultural diagnostics. Techniques such as deep 

learning models have been indicated to process unstructured 

image data to identify visual signs of disease, and time-

series models to examine the dynamics of weather that 

cause diseases. In the meantime, ensemble modeling, as 

well as decision trees, has been in common use to deal with 

tabular format data like soil features and rainfall indicators 
[3-4]. However, not many frameworks not only bring these 

modalities together, but also into a single predictive system 

touted at responding to the multifactorial aspect of the crop 

health and agro-risk. 

In addition, there is an urgent need of models that detect the 

crop diseases but also evaluate agro-risk- an index that 

indicates the possible loss in yield because of environmental 

or pathological risk factors [5-6]. This may enable farmers, 

agronomists, and policy makers to take preoperative 

countermeasures and distribute resources better. As the idea 

of sustainable farming and climate-smart agriculture goes 

white hot, it is high time to plan data-driven tools that may 

be used to integrate coordinated visual, climatic, and 

geospatial information to detect disease and manage risks 

proactively. 

 

 
 

Fig 1: Multifactorial Influences on Agro-Risk and Crop Disease 

Diagnosis 

 

In fig 1 the interrelating factors affect agro-risk by 

developing crop diseases. On fundamental level, there are 

three main inputs namely Imaging, Soil, and Weather which 

play an imperative role in providing data. These aspects 

both singly and together cause the occurrence and 

development of Disease in Crops, and these are the main 

factors in the whole process of agricultural health 

surveillance [7]. The imaging file records observable 

symptoms and plant defects, the soil records the nutrient 

ratio of the soil and the health of roots and the weather data 

records climatic stress such as the humidity temperature and 

rainfall. All these factors when combined cause a high 

Agro-Risk, which is depicted at the top of the schema and 

suggests possible danger to a crop output, productivity, and 

food security. Directional arrows indicate that there is a 

causal relationship in the data sources to disease 

manifestation and finally prediction of risk which require an 

integrated analysis in precision agriculture systems.  

 

Review Section 

Within the framework of smart agriculture and precision 

farming, researchers have made a lot of attempts to 

overcome the topical issues of crop illness identification and 

agro-risk evaluation. The researcher has advisedly 

repetitively focused on the fact that artificial intelligence 

must be intertwined with centuries-old way of agriculture to 

enhance the initial warning systems. Image-based plant 

disease classification is one of the strands of research 

angered by impressive performance shown by DCNNs in 

the extraction of features in textures and discolorations in 

leaves [8-10]. The researcher emphasized that CNNs are the 

most efficient in the situation with big annotated data, yet 

they fail to perform well in the multimodal and 

heterogeneous contexts related to soil, climate, and 

geospatial variances. 

Other authors considered the usability of LSTM in 

predicting time-series of agro-climatic risks, including 

droughts and pest outbreaks. This approach was of value in 

the short-term predictions but was not that strong in its 

spatial generalization [11]. The researcher also investigated 

conventional machine learning solutions like support vector 

machines and decision tree for vegetation soil vegetation 

condition classification. These models were interpretable; 

however, their effectiveness was sometimes lower in terms 

of using noisy data or missing measurements in field 

sensors. 

The author suggested hybrid models in which handcrafted 

feature-based models are combined with deep learning 

models to put accuracy and generalization in balance. 

Configuring an ensemble of random forest classifiers with a 

shallow CNN trained to detect several diseases across crops 

was a case in point, having increased specificity [12-13]. 

Nonetheless, the researcher noted some shortages of 

expandability and constraint in real-time reasoning. 

Simultaneously, additional scholars developed attention-

based systems and multi-branched neural networks so that 

the sensor data, satellite imaging, and the inputs made by 

farmers could be combined effectively. These models 

increased semantic understanding yet were computationally 

to expensive and did not port easily in deployment in the 

countryside. 

A new direction of interest of the author is the multimodal 

data fusion, in which the imaging data is combined with 

structured inputs, including soil moisture, temperature, etc. 

The scholar indicated that the techniques resulted in the 

provision of contextual awareness and enhanced decision 

support systems [14-16]. Nevertheless, each additional 

modality multiplies the complexity so much that producing 

architectural innovations may be required. To reduce this, 

the researcher added intermediate modes of fusion whereby 

underlying features of both modalities are first mapped into 

a common feature space after which they are classified. 

The advances of recent years also saw the exploitation of 

transformer-based models and graph neural network in the 

agricultural risk modeling [17-19]. The architectures support 

spatiotemporal reasoning and dynamic attention, although 

the author has stated that they needed a lot of training and 
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hyperparameter optimization which is not an option in low-

resource environments. In the meantime, the agro-diagnostic 

with lightweight models is currently being studied to 

become deployed to the edges to support real-time usability. 

The researcher highlighted that the networks compatible 

with edges should be energy efficient, minimum latency, 

and throughput to make them scalable in rural farms. 

 

Materials and Methods 

The designed HDNN-RF Fusion Net system is compelling 

and coherent machine learning framework that aims at 

supporting multi-crop disease diagnosis and agro-risk 

prediction on heterogeneous agricultural data sets. It uses a 

synergy of many modules of deep neural networks with a 

Random Forest ensemble to fill these gaps on a wide-scale, 

thus learns well and being transformed to be easily 

interpretable. The technique uses the weather data, soil 

parameters, and spectral imaging data as its major assets. 

All these types of data have their own peculiarities: 

structured, unstructured and time-dependent data need 

special preprocessing and encoding methods in fig 2. The 

main concept of the system is the organization into multi-

branch architecture that separately processes each modality, 

then the fusion of the latent representations is accomplished 

using an attention-based mechanism that returns a unified 

feature vector. Such vector is subsequently run through a 

dual-task Random Forest model, which is used to affect the 

task of disease classification and risk index estimation. 

The input data sets, i.e., weather, soil, imaging, data are pre-

processed to remedy temporal and spatial consistency. The 

weather observation is usually measured in series of time of 

such climatic variables as temperature, humidity and rain. 

The data about the soil include geospatially fixed data which 

is in the form of tabular records on PH, organic content and 

macro-nutrient concentrations.  

 

 
 

Fig 2: Design of HDNN-RF FusionNet for Multimodal 

Agricultural Risk and Crop Disease Forecasting 

The imaging data encompass high-resolution RGB or 

multispectral pictures of drones or satellites. Every data 

source goes through the modality-specific encoder network. 

A convolutional neural network (CNN), based on Efficient 

Net-lite, is used for the image input, optimized for spectral 

detection of patterns. Let represent an input picture 

characterized by height H, width W, and channels C. The 

CNN translates this into a compact latent representation 

utilizing: 

 

      (1) 

 

where  is the CNN transforming functional and 

∈S^e is the resultant vector of features of size e. 

 

Concurrently, the weather information ∈S^(V×l), with V 

representing the total amount of time steps and k denoting 

the number of features per step, is processed via a stacking 

Long Short-Term Memory (LSTM) networks for capturing 

temporally dependency. The weather encoding function is 

articulated as: 

 

     (2) 

 

In this context,  analyzes a series of input and 

generates a vector with a fixed length ∈ S^e. 

 

The soil data S∈R^m, with m denoting the quantity of soil 

properties, is processed by a multilayer perceptron (MLP), 

expressed as: 

 

     (3) 

 

where  is the soil encoded networks that transforms 

the input into a latent space of dimensions e. The resultant 

encoding vectors , , and  are further normalized as 

well as aligned. 

The subsequent phase involves attention-driven fusion of 

features. A system for attention evaluates the relative 

significance of every modality, producing weights 

so that α_J + α_G + α_R = 1. These are 

acquired by a softmax applied to modality-specific functions 

for scoring : 

 

  (4) 

Each  is calculated using a learnable functional  used 

to the corresponding feature vector: 

 

  (5) 

 

where , , and  are parameters that can be trained for 

modality n. The ultimate fused vector  is then 

formulated as:  

 

   (6) 
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This integrated symbolized now encapsulates the 

multimodal agricultural background of the crop samples. 

Instead of utilizing a deep classification system, a RF is 

utilized to harness collective learning for two concurrent 

objectives: multi-class illness categorization and agro-risk 

predictions. 

In the illness classifying task, the category goal ∈{1, 

2,…,D} is forecasted, where C represents the total number 

of disease categories. The RF classifiers S_k comprises, V 

decision trees, each taught on bootstrapping samples. The 

forecast is determined by a plurality vote: 

 

   (7) 

The ensemble forecast is shown by , the  operates 

obtained from RF and 𝑣𝑡ℎ selection function, and 𝑉 is the 

overall amount of trees that are part in the majority vote. 

 

    (8) 

 

  signifies the mean regression results, represents the 

predictive function of the v-th regressor in the RF, and V 

specifies the total count of regression trees. The ensemble 

can do categorization and risk estimate at the same time 

since it is a dual-task approach. Each task benefits from the 

common fused illustration. 

To train the whole design, you have to minimize a 

composite objective function. The total loss  is made 

up of two parts: a category loss  and a regression loss 

. Classified cross-entropy is categorized as loss: 

 

   (9) 

 

 represents the category loss,  denotes the ground 

truth indicators for class c,  signifies the projected 

probabilities for class c, and C indicates the overall number 

of classes. 

 

     (10) 

 

Considering the balancing parameter λ∈[0,1], the total loss is: 

 

   (11) 

 

When backpropagation, the focus weights are tuned along 

with this combined goal. Also, a regularization strategy is 

included during the fusion step to fix the problem of 

overfitting in the vectors of features with a lot of variation. 

Following the encoder systems and fusion component are 

completely trained, the random-forest models are taught on 

their own. To do this, the fused vectors of features and their 

labels (E_"fused", y_d, y_r) are put together into a 

supervised dataset. The same process is utilized for 

inference: every modality encoding its attributes are 

combined with attention weights, after which the ensemble 

algorithms make predictions. 

Geospatial information embedded data are also included at 

the soil input stage to make the model more resilient in 

space and time. These embeddings come from a position 

matrices G∈R^(n×2), when each row shows both the 

longitude and latitude of the place where the samples were 

taken. This projection is in the same field of features as the 

soil vector: 

 

    (12) 

 

The anticipated embedding  gets combined with  

before to being input into the MLP: 

 

     (13) 

 

ER∗ is the enrichment representations vector, ϕMLP 

signifies the multilayer perceptron function, R is the 

unprocessed input featured vectors, FH is the high-level 

representation of the features, and [R∣∣FH] symbolizes the 

combined value of both vectors. Where || represents 

concatenation of vectors. It is done so that the model is 

sensitive to regional soil behavior and variability of 

microclimate. 

The whole system is summarized in a training workflow 

with data augmentation of the imaging channel, time 

window sampling of the weather and K-fold split of soil 

samples. Spatial transforms are horizontal flips, rotations, 

and random crop, which are included in data augmentation. 

The time-series samples are built using sliding windows of 

size T which has a stride s which covers sampling of 

seasonal variation. The training strategy guarantees that all 

the branches should be subjected to diverse patterns to a 

degree that can add to the general strength of the model. In 

addition, the modularity of HDNN-RF Fusion Net allows 

one to integrate more input variables, e.g., the record of the 

pests infestation or continuously incoming sensor data via 

the Internet of Things (IoT). In that way, this architecture 

constitutes an agile and smart agro-diagnostic system, which 

is stringently designed to effectively implement in the 

diverse agro-climatic locations. 

 

Results 

The suggested HDNN-RF Fusion Net presented a higher 

efficiency in all of the important time-based measures of 

performance. It had a speedier training and inference rate, a 

minimal end-to-end latency and a lot greater throughput 

than prior approaches. These findings indicate that the 

model is capable of real-time scalable multi-crop disease 

diagnosis and prediction of agro-risks. 

Training Time (min): A total training time of the entire 

dataset. 

Inference Time (ms/sample): An average value of the time 

that the model needs to come up with a prediction per single 

input sample. 

End-to-End Latency (ms): The sum of the time needed to 

obtain an input data and to receive the final output 

prediction. 

Throughput (samples/sec): the number of samples that the 

model can handle each second of the inference. 
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Table 1: Training Time and Throughput Comparison of Models 
 

Model 
Training 

Time (min) 

Throughput 

(sec) 

CNN-Based Crop Classifier 149 80.6 

LSTM-Based Weather Predictor 173 66.3 

MLP-Based Soil Quality Estimator 97 103.4 

Multimodal Deep Fusion Model 184 59.2 

HDNN-RF FusionNet (Proposed) 75 160.7 

 

 
 

Fig 3: Analysis of Training Time and Throughput for Models 

 

HDNN-RF FusionNet was proposed and proved to be more 

efficient in training as well as faster in processing than all 

the previously existing techniques in fig 3. It posted the 

shortest training time of 75 minutes, many times more than 

CNN-Based Crop Classifier (149 min), LSTM-Based 

Weather Predictor (173 min), MLP-Based Soil Quality 

Estimator (97 min), and Multimodal Deep Fusion Model 

(184 min). Also, the proposed model achieved the highest 

throughput of 160.7 samples/sec, which is better than MLP-

Based Estimator of 103.4/sec, CNN model 80.6/sec, LSTM 

model 66.3/sec, and Multimodal Fusion method of 59.2/sec 

which goes on to show the stronger scalability and real-time 

responsiveness of the proposed model to real-time agro-

intelligence tasks. 

 
Table 2: Comparison of End-to-End and Inference Time 

 

Model 
Inference 

Time (ms) 

End-to-End 

Latency (ms) 

CNN-Based Crop Classifier 13.8 21.1 

LSTM-Based Weather Predictor 16.4 23.7 

MLP-Based Soil Quality Estimator 10.7 14.9 

Multimodal Deep Fusion Model 18.3 26.6 

HDNN-RF FusionNet (Proposed) 7.1 11.4 

 

 
 

Fig 4: Estimation of End-to-End and Inference Time 

 

The response and delay of the HDNN-RF FusionNet model 

was the fastest and the least compared to all other models. It 

had an inference time of 7.1 ms and an end-to-end latency 

of 11.4 ms compared with the 10.7 ms, 14.9 ms of MLP-

Based Soil Quality Estimator, 13.8 ms, 21.1 ms of CNN-

Based Crop Classifier, 16.4 ms, 23.7 ms of LSTM-Based 

Weather Predictor, and the 18.3 ms, 26.6 ms of Multimodal 

Deep Fusion Model in fig 4. That demonstrates the potential 

of the proposed model in providing supremely responsive 

and time-sensitive analytics on the agro-risk, which can 

easily be deployed in real time. 

 

Conclusion 

The proposed model also presents a strong hybrid learning 

framework that successfully integrates deep neural nets with 

the RF collection to diagnose diseases of multiple crops and 

ascertain agro-risks based on the cross-sectional agricultural 

data. Using visual scenes, temporal weather measurements, 

and stable soil circumstances, the impact of multi-modal 

data conformity on the reliability and validity of early farm 

disease detection is realized with the suggested method. The 

attention-guided feature fusion process allows the model to 

give dynamic weight to the usefulness of each source of 

inputs, leading to enhancing the classification accuracy of 

various types of diseases. Also, the built-in agro-risk 

forecasting feature provides real insight on possible yield 

reduction, which assists farmers and agronomist to make 

time-sensitive decisions. Compared to classical models 

(single modalities), the framework is superior, but above all, 

it is also interpretable, output by the Random Forest 

parameter, a feature that will be useful when it comes to 

practical applications in low-tec territories of agriculture. 

The outcomes prove that the supplied HDNN-RF FusionNet 

represents a scaled and flexible mechanism of intelligent 

agro-monitoring that makes a great contribution to 

achieving the objectives of climate-resilient and 

sustainability-driven farming activities. 

 

Future Work 

Adoption of real-time image feeds of drones and UAVs to 

up the spatial resolution. The input of data on pest 

infestations, together with stages of crop life cycles into the 

model. Use of the system as an edge-AI application of 

disease in the field. 
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