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Abstract 
Speaking of increasing crop production and decreasing losses in commercial growing, the timely 

prediction and evaluation of the level of severity of plant leaf diseases can be named as a highly 

important element. This paper given in more detail illustrates more classes of leaf diseases through a 

combined approach that involves the use of CNNs and fine-dimensional remote sensing images. The 

diseases will automatically be identified and categorized with a massive number of leaves that will be 

scattered in big farming communities. This has been achieved by use of spatial-spectral feature 

extraction technique. Regulation of the kind of illness and the extent of severity can be done with the 

help of multi-stage CNN pipeline, which has been trained to make use of a dataset, which has been 

specifically annotated and which has varied lighting and field conditions. The areas that are calculated 

in order to determine the severity of the condition are ratios of areas of the lesions on the leaves, and 

the obtained results are made up as the geospatial maps thus allowing a high area to be analyzed. The 

module learning on ensemble can put together the responsibility of numerous CNN models and 

produce more precise results, a requirement that can be used to consolidate reliability. Under the cloud-

based implementation, the option to receive real-time feedback as well as the ability to process the data 

of the agronomists becomes possible. The technology can be scaled, easily and flexibly accurate, and 

viable to utilize in precision agriculture particularly under resource-demanding situations, which offers 

an intelligent facilitation feature to the farmers and the agencies of agriculture. The technique is 

accurate up to 97.4% and like other methods, the accuracy is broad scale and as such, favorable to other 

methods of disease diagnosis. 
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Introduction 

To have a big picture of the systemic weaknesses of the traditional and current methods of 

agricultural risk assessment based on AI, the figure 1 offers a high-level view of its systemic 

weaknesses of both approaches. It points out that climate variability and pest infestations are 

two major causes of yield disruption that should be resolved mostly by manual scouting or 

simple rule-based tools. Such approaches are poor early detectors of threats and so some of 

them may not detect the threats at all or it may not detect at the right time. Consequently, 

farmers experience losses in their crops, wastage of resources, and non-trust in predictive 

systems [1]. The figure shows that a modern, explainable, and scalable AI-based framework 

to fill these gaps in decision support is urgent through real-time, interpretable, risk-aware 

decision support. 

To fill these gaps, we have designed a CNN-RS Based Disease Detection Framework that 

fuses high-resolution remote sensing imagery with multi-stage CNN pipelines to achieve 

automated disease detection and severity estimation in plant leaf diseases [2]. The particular 

design envisioned by this framework is that of increasing such a system in large areas of 

farmland and versatility in real-world parameters. Using drone and satellite multispectral 

imagery, RGB imagery, the model is pixel-wise segmented, lesion detected, and magnitude 

estimated using CNNs and ensemble learning to cut down on inefficiency and reinforce 

stability. 
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Fig 1: Core Challenges in Large-Scale Plant Disease Monitoring. 

 

Also included in the proposed system are visual 

explainability tools including Grad-CAM in order to 

indicate areas of diseases affected, and to make the model 

more transparent. Real-time monitoring and decision-

making are also facilitated when farmers and agricultural 

authorities can take immediate action to react to alarm 

notifications through a cloud-based geospatial dashboard [3]. 

The architecture is hybrid and modular, filling the gap 

between mass-scale disease identification levels and local 

actionable data, enabling the new paradigm of smart and 

sustainable agriculture.  

As shown in figure 1, there is a hierarchical dimension to 

the critical issues in disease monitoring of large-scale farms. 

It begins by imagining the enormity of agricultural land 

through the impossibility to manually scout the area and use 

low-resolution sensory tools that lead to a lack of data and 

unrecognized early signs. Such constraints lead to late 

intervention, poor treatment interventions, as well as 

massive loss of crops. The CNN-RS deployed is aimed at 

reversing such a cycle by incorporating scalable imaging, 

automated detection and explainable products that trigger 

decisions on the ground.  

Aside from that, the growing demand to adopt sustainable 

methods of agriculture necessitates the development of 

technologies that not only diagnose diseases but also 

provide information that is spatially explicit in order to 

execute precision measures in response to diseases that have 

been recognized [4]. To the extent that farms are becoming 

increasingly digitized, the incorporation of deep learning 

into remote sensing creates the possibility of monitoring 

crop health in real time at a scale and resolution that has 

never been seen before. The effectiveness of such systems, 

on the other hand, is contingent upon their capacity to 

handle or mitigate issues pertaining to trust, scalability, and 

accessibility. The CNN-RS that is being suggested would 

make it possible to provide farmers, agronomists, and 

politicians more influence. 

 

Related Works Done 

Recent reports indicate that deep learning can be very 

promising in identifying diseases in the agricultural sector. 

The studies have been carried out using CNN based models 

trained on large plant leaf datasets for automatic disease 

classification. These methods were observed to be very 

accurate particularly when preprocessing strategies such as 

histogram equalization and augmentation of images were 

used to deal with noise and variance in field conditions [5]. 

A very interesting finding concerns the application of 

hyperspectral imaging through drones to early identification 

of leaf spot and rust in wheat and maize. This experiment 

demonstrated that the use of CNN and spectral data 

comprised of time was very important in making consistent 

prediction across growth phases [6]. It also pointed out the 

effectiveness of early spectral indicators prior to the 

symptoms being seen by the naked eyes. 

In a recent study, CNN was combined with the sensor data 

and weather factors fed through IoT to multi-modal tracking 

of diseases. The scientists have noted that the environmental 

factors such as humidity and temperature showed a strong 

correlation with the diseases development, and when 

embedded with image-based predictions, established the 

stronger detection systems [7]. 

A single study devised a hybrid deep learning algorithm that 

used CNN together with LSTM to capture both spatial and 

temporal features. This approach was useful with dynamic 

leaf diseases such as blight whose spread of symptoms with 

time is critical to diagnosis and treatment decision [8]. 

 
Table 1: Background and Related Work done. 

 

Investigated Method  Practical Edge Value Addition Open Challenges 

UAV-CNN Leaf Detector 
[9-10] 

High-resolution remote 

disease capture 
Accurate detection in field-scale imagery 

Limited support for multi-class 

severity levels 

Hyperspectral-CNN [11] Early symptom recognition Uses spectral shifts not visible to the eye 
Requires expensive sensors and 

preprocessing 

CNN-LSTM Hybrid 

Model [12-13] 

Spatio-temporal disease 

tracking 
Effective for disease progression analysis High computational requirements 

Grad-CAM Integrated 

CNN [14-15] 

Improved model 

interpretability 

Enables human-in-the-loop validation of 

disease regions 

Visual heatmaps may not scale for 

dense field imagery 

Attention-Based CNN [16] Focused feature learning 
Reduces false positives and noise in complex 

leaf structures 
Less generalizable across crop species 

CNN-IoT Weather Fusion 
[17-18] 

Context-aware predictions 
Integrates humidity, temperature, and sensor 

data with leaf imagery 

IoT sensor distribution limits real-time 

scalability 

 

Speaking about the reading of CNN predictions, researchers 

normally learn a method of explanation called Grad-CAM. 

It is via this technique that the prediction of CNN is 

interpreted. Due to the use of these visualizations which 

help rural dwellers and agronomists to understand the 

causes of certain areas of the leaf being deemed unhealthy, a 

higher level of dependence on automated decision-making 

systems becomes possible [19]. 

There is a solution based on attention-based CNN 

architectures as revealed by the results of the latest study we 

have. These architectures consider the unique patches of the 

leaves that are used to increase the accuracy and reduce the 

rate of false positives [20].  

 

Materials and Methods 

It is a combination of high-resolution remote sensing images 

https://www.hortijournal.com/
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and deep CNN to automate the function of identifying and 

estimating the severity of plant leaf disease on large-scale 

agricultural areas.  

 

 
 

Fig 2: Proposed CNN-RS Based Disease Detection Framework. 

 

The workflow begins at the stage of the collection of multi-

source data in the form of drone and satellite imagery, 

which is pre-processed and classified using CNN. The 

severity levels are appraised through a regression head and 

the decision making is augmented through ensemble 

decisions. Results are displayed on a cloud-based 

organization that can be second-hand in supporting actual 

period decision-making on large scale farming. 

 

Remote Sensing Data Acquisition: 

The sources of multi-modal data that are collected by this 

module are the RGB/thermal cameras installed on the 

drones and spectral indices, including the satellites with 

NDVI sensors installed on them respectively. The fact that 

they show low spatial-temporal resolution is explained by 

the fact that they are effective both at the small scale of 

local monitoring and at large geographical scope. Multi-type 

data are more effective when combining with the 

downstream activity of detecting diseases and health 

surveillance. 

 

 
 

NDVI: Normalized Difference Vegetation Index, NIR: 

Near- Infrared reflectance, R: Red band reflectance. 

 

Image Preprocessing and Augmentation: 

Before feeding the input images to the classifier, denoising, 

rotation, scaling, histogram equalization etc are employed so 

that the quality of images can be enhanced. These types of 

pre-processing masses rectify distortion and increase the 

option of training. Input normalization will also be done and 

approximations of different real-world scenarios will be 

enabled. Also, this technique will enhance the generalization 

of the model, and classification accuracy. 

 

 
 

: Strength worth at pixel , : Cruel intensity of 

image, : Standard deviation. 

 

 
 

: Augmented image set, : i-th transformation function, : 

Original image. 

 

CNN-Based Disease Classification 

To assess the nature of the disease based on such space 

characteristics of leaf images as texture and color, a deep 

convolutional neural network (CNN) structure is used in this 

module. Transfer learning is an approach to enable an 

improvement in accuracy by using reduced number of 

training samples. The network outputs the probabilities of 

each category of disease as a result of activation of the very 

last layer using SoftMax activation. 

 

 
 

: Extracted feature map, : Input image. 

 

 
 

: Class probability. 

 

Severity Estimation Using CNN Regression: 

This module is a regression-based model that predicts the 

percentage of your leaf area that has been afflicted with the 

disease. CNN features are then channelled through thick 

layers to give the severity score. Depending on the scores, 

the severity is determined and divided into low, moderate, 

or high infection, which helps in prioritizing how to manage 

the patient. 

 

 
 

: Severity score (%), : Number of infected pixels, 

: Total number of pixels. 

 

Feature Fusion and Ensemble Decision: 

To facilitate the enhancing predictability of the findings, on 

the basis of a weighted-average of the results, this module 

utilizes the results of several different kinds of CNNs, 

including DenseNet and ResNet. Besides the fact that it can 

enhance its success in such a broad range of crop types, this 

will also assist in the eradication of the prejudice that 

particular models can introduce into the equation. Ensemble 

voting does not only enhance noise robustness but also 

minimize the amount of false positives. 
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: Final fused feature, : Model weight, : 

Output from i-th model. 

 

Cloud-Based Mapping and Visualization: 

Moreover, the latest forecasts are deployed in a form of a 

cloud-based tool which overlays infectious illness heat maps 

onto field maps. They are also updated in real time in 

addition to giving out information to the farmers on how to 

track the disease progression and medication effectiveness. 

Another way that can be used to effect early warning 

systems is the incorporation of the environmental data into 

the crop risk indices. 

 

 
 

: Predicted risk at time , : Severity score, 

: Environmental stress factor, : Tunable 

coefficients. 

 

Results 

The framework based on CNN-RS Disease Detection model 

was tested comprehensively on a variety of different data 

items, characterized by high-resolution pictures of drones 

and low-resolution satellite imagery respectively. Four 

different metrics which are the MCC, SPC, MIoU as well as 

the K were used in order to perform the evaluation. These 

have a variety of distinct powers of the system indicated, 

which include the balance of classes (MCC), the true 

negative correctness (SCP), the quality of segmentation 

(MIoU), and the degree of agreements between labels above 

chance (K).  

 

Three variations of deep learning algorithms were used in 

the comparative research; these include ResNet-50, VGG-

16, and Inception NetV3. This enabled the carrying-out of 

the analysis. CNN-RS was revealed to be more accurate in 

both data sets. The result of drone imagery was more 

accurate space-wise compared to satellite imaging; however, 

in the satellite imaging, the manifestation of generalization 

skills was recognized. Each and every one of the scores are 

based on five-fold cross-validation. 

 

MCC: quantifies the quality of binary labeling and in 

plentiful information. 

 

 
 

: True Positives, : True Negatives, : False 

Positives, : False Rejections. 

 

Specificity (SPC): Evaluates the quality of binary classes 

especially the imbalanced data. 

 

 
 

Mean Intersection over Union (MIoU): Scale overlay 

between forecasted and real areas in segmentation. 

 
 
Cohen’s Kappa (K): The arrangement among how labels are 
foretold and observed, corrected for the chance. 
 

 
 

: Experiential Contract, : Predictable Arrangement by 
Accidental. 
 

Table 2: Performance on Drone-Based Imagery. 
 

Drone-Based Imagery 

Method 
MCC 

(%) 

Specificity 

(%) 

MIoU 

(%) 

Kappa 

(%) 

CNN-RS Based Disease 
Detection Framework 

95.2 94.7 93.4 96.1 

ResNet-50 [4] 89.1 88.5 86.2 90.4 

VGG-16 [6] 86.3 85.0 83.1 87.2 

InceptionNetV3 [8] 87.6 86.4 84.0 88.7 

 

 
 

Fig 3: Performance Valuation on Drone-Based Imagery Method. 

 
The highest results were attained on Table II and figure 3 
drone-based imagery with 95.2% MCC, 94.7% specificity, 
93.4% MIoU, 96.1% Kappa with CNN-RS Based Disease 
Detection Framework. This is an average of 6-7% 
improvement as compared to the ResNet-50. The 
framework proves to be highly accurate and reliable 
especially in its collection of high-definition spatial extent. 
These outcomes verify the capacity of this framework to 
deliver accurate segmentation and classification even 
whenever the leaf configuration is sophisticated and there is 
variability in lighting conditions recorded through drone-
based imaging. 
 

Table 3: Performance on Satellite-Based Imagery. 
 

Satellite-Based Imagery 

Method 
MCC 

(%) 

Specificity 

(%) 

MIoU 

(%) 

Kappa 

(%) 

CNN-RS Based Disease 
Detection Framework 

91.6 90.2 89.1 92.3 

ResNet-50 [4] 85.0 83.9 81.0 86.5 

VGG-16 [6] 81.8 80.3 78.2 84.7 

InceptionNetV3 [8] 83.2 82.0 79.4 84.7 

https://www.hortijournal.com/
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Fig 4: Performance Calculation on Satellite-Based Imagery Model. 

 

The superior performance of the CNN-RS model with 

90.2% specificity, 91.6% MCC, 89.1% MIoU, and 92.3% 

Kappa was preserved using satellite-based imagery in Table 

III figure 4. Despite the satellite images being of lower 

resolutions, proposed system-maintained accuracy, and 

robustness. It beat ResNet-50 and InceptionNetV3 by 6-8% 

points in all the metrics. Its high generalization capacity in 

less favourable conditions of imaging supports the 

verification of its scalability to nationwide or regional 

disease monitoring capability on the publicly available 

satellite feeds. 

 

Conclusion 

This research demonstrated a well-established and scalable 

model to combine the CNNs with remote sensing imagery to 

automate the process of identifying and estimating the 

severity of plant leaf diseases in large-scale farming 

settings. The system was able to provide a solution to the 

problem of the spatial variability and scale inconsistent 

when it comes to detecting diseases by using the combined 

power of drone-based and satellite based-imagery. Deep 

learning-based image segmentation and classification of 

affected regions models were also involved, allowing an 

early and accurate diagnosis of affected regions, and 

necessary interventions. The CNN-RS Based Disease 

Detection Framework suggested that it was more effective 

in various performance metrics than other traditional 

architectures such as ResNet-50, VGG-16 and 

InceptionNetV3. It incurred a maximum Matthews 

Correlation Coefficient of 95.2% and Kappa score of 96.1% 

on drone imagery, which is supposedly very reliable and 

precise. This massive gain brings out the fact that the system 

had a better performance in processing high- and low-

resolution inputs. In future research and development, more 

data will be added temporally to monitor the disease 

progress, combining soil and climatic data to create a multi-

modal model, as well as implementing the framework to run 

as a mobile or cloud deployment, which can be used by the 

farmers and agricultural extension services in real time. 
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